INDION 236 is a weak, unifunctional cation exchange resin containing carboxylic acid groups. It is based on cross-linked polyacrylic acid and is supplied as moist white beads in the hydrogen form.

INDION 236 is recommended for the reduction of alkalinity in boiler feed water. It is also widely used in the treatment of water for many industrial processes.

Information is given in this publication for the operation of INDION 236 in the hydrogen cycle, using a mineral acid as the regenerant.

Description

INDION 236 is a weak acid, unifunctional cation exchange resin containing carboxylic acid groups. It is based on cross-linked polyacrylic acid and is supplied as moist white beads in the hydrogen form.

INDION 236 is recommended for the reduction of alkalinity in boiler feed water.

Characteristics

- **Appearance**: Opaque white to pale yellow beads
- **Matrix**: Gel polyacrylic copolymer
- **Functional Group**: Carboxylic acid
- **Ionic form as supplied**: Hydrogen
- **Total exchange capacity**: 4.0 meq/ml, minimum
- **Moisture holding capacity**: 46 - 54%
- **Shipping weight**: 740 kg/m³, approximately
- **Particle size range**: 0.3 to 1.2 mm
 - > 1.2 mm: 5.0%, maximum
 - < 0.3 mm: 2.0%, maximum
- **Uniformity co-efficient**: 1.7, maximum
- **Effective size**: 0.40 to 0.50 mm
- **Volume change**: H to Na, 80-120%
- **Maximum operating temperature**: 120°C
- **Operating pH range**: 0 to 14
- **Resistance to reducing agents**: Good
- **Resistance to oxidizing agents**: Generally good, chlorine should be absent

* Weight of resin, as supplied, occupying 1 m³ in a unit after backwashing and draining
Applications

De-alkalizing
This high capacity resin is particularly suitable for water containing a high proportion of alkalinity. A working capacity of up to 130 kg CaCO₃/m³ of resin can be obtained by regeneration with the stochiometric acid equivalent of the capacity utilised during the rinse and exhaustion cycle. When used as recommended, it is virtually impossible for free mineral acid to be present in the treated water unless a considerable excess of acid is used during regeneration. The maximum capacity of the resin for exchanging salt of strong mineral acids is 3 kg CaCO₃/m³.

De-alkalising-softening
INDION 236 removes calcium bicarbonate alkalinity from water, thus reducing total dissolved solids. It can also be used to soften water containing sodium alkalinity. If removal of non-alkaline hardness is required, de-alkalising should be followed by softening using INDION 225 in the sodium form.

Two stage de-ionising
INDION 236 is used with INDION FF-IP in the two stage purification of sugars. For certain purposes it can also be used with INDION FF-IP in two stage deionising of water, but commonly INDION 236 is used as the first stage in a deionising train followed by a strong acid cation resin such as INDION 225 or 525 to yield high regeneration efficiency or layered bed de-ionising.

Typical operating data

(Co-flow regeneration)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bed depth</td>
<td>0.75 to 2.0 m</td>
</tr>
<tr>
<td>Treatment flowrate</td>
<td>60 m³/h m², maximum</td>
</tr>
<tr>
<td></td>
<td>40 bv/h, maximum</td>
</tr>
<tr>
<td>Backwash</td>
<td>4 m³/h m³ until effluent is clear</td>
</tr>
<tr>
<td>Bed expansion</td>
<td>Refer figure 6-8</td>
</tr>
<tr>
<td>Regenerant</td>
<td>Sulphuric acid</td>
</tr>
<tr>
<td>Regenerant concentration</td>
<td>0.8 % w/v</td>
</tr>
<tr>
<td>Regenerant injection time</td>
<td>17 bv*/h</td>
</tr>
<tr>
<td>Regenerant injection time</td>
<td>15 minutes, minimum</td>
</tr>
<tr>
<td>Slow rinse</td>
<td>1 bv at regenerant flowrate</td>
</tr>
<tr>
<td>Rinse flowrate</td>
<td>10 bv/h or at treatment flowrate</td>
</tr>
</tbody>
</table>

* 1 bv (bed volume) = 1 m³ solution per 1 m³ resin
Operating Exchange capacity

De-alkalizing
When operated in the hydrogen cycle, the exchange capacity of INDION 236 is determined by
- The rate of exhaustion of the resin (see Figure 1)
- The sodium alkalinity of the feed water (see Figure 2)
- The temperature of the feed water (see Figure 3)
The operating capacity data given in this publication is based on a methyl orange end point of 30 ppm CaCO₃.

Exhaustion Rate
The treatment flowrate should be such that the design capacity of the plant in which INDION 236 is used will be achieved in the design exhaustion time or longer (see Figure 1).

Sodium Alkalinity
The operating exchange capacity of INDION 236 needs to be corrected for feed water containing sodium alkalinity (see Figure 2). However when the water being treated contains appreciable sodium alkalinity, the cycle can be continued beyond the recommended alkalinity end point of 30 ppm CaCO₃, so that the resin acts as a partial softener by exchanging calcium for sodium ions. In this case INDION 236 is operated to hardness breakthrough and the correction factor need not be applied.

Feed water Temperature
The effect of increased temperature of the feed water is to improve capacity as shown in Figure 3. Maximum capacity is obtained when the feed water temperature is 40°C, approximately.
Treated Water Quality

When operating under the conditions indicated viz, the appropriate flowrate to give the design capacity, the average treated water from INDION 236 will always be alkaline to methyl orange. Figure 4 shows typical treated water quality when utilizing the maximum capacity of INDION 236 to M-alkalinity end-point of 30 ppm CaCO₃. If in relation to the capacity required a very large excess of regenerant acid is used or the EMA of the water is greater than 250 ppm CaCO₃ some acidity may be present in the treated water.
Figure 7
BED EXPANSION
Bed expansion (H⁺ or Na⁺ form)

Figure 8
BED EXPANSION
Backwash rate correction factor

Multiply backwash rate by
kg CaCO₃/m³
Resin loading (Calcium)
Use of good quality regenerants

All ion exchange resins are subject to fouling and blockage of active groups by precipitated iron. Hence the iron content in the feed water should be low and the regenerant must be essentially free from iron and heavy metals. All resins are prone to oxidative attack, resulting in problems such as loss of physical strength. Therefore, the regenerant should have as low chlorine content as possible. Good quality regenerant of technically or chemically pure grade should be used to obtain best results.

Packing

- HDPE lined bags 25/50 lts
- LDPE bags 1 cft/25 lts
- Super sack 1000 lts
- Super sack 35 cft
- MS drums
- Fiber drums
- with liner bags 180 lts
- with liner bags 7 cft

Storage

Ion exchange resins require proper care at all times. The resin must never be allowed to become dry.

Regularly open the plastic bags and check the condition of the resin when in storage. If not moist, add enough clean demineralised water and keep it in completely moist condition. Always keep the resin drum in the shade. Recommended storage temperature is between 20°C and 40°C.

Safety

Acid and alkali solutions are corrosive and should be handled in a manner that will prevent eye and skin contact. If any oxidising agents are used, necessary safety precautions should be observed to avoid accidents and damage to the resin.

INDION range of Ion Exchange resins are produced in a state-of-the-art ISO 9001 and ISO 14001 certified manufacturing facilities at Ankleshwar, in the state of Gujarat in India.

To the best of our knowledge the information contained in this publication is accurate. Ion Exchange (India) Ltd. maintains a policy of continuous development and reserves the right to amend the information given herein without notice.

ION is the registered trademark of Ion Exchange (India) Ltd.

CORPORATE OFFICE

Ion House, Dr. E. Moses Road, Mahalaxmi, Mumbai 400 011
Tel: 022-3989 0909 Fax: 022-2493 8737
E-mail: ieil@ionexchange.co.in

INTERNATIONAL DIVISION

R-14, T.T.C MIDC, Thane-Belapur Road, Rabale, Navi Mumbai 400 701
Tel: 022-3989 0909/3047 2400 Fax: 022-2769 7918
E-mail: rabcroinf@ionexchange.co.in; export.sales@ionexchange.co.in

REGIONAL OFFICES

- **Chennai** - Tel: 044-3989 0909/3910 2900 Fax: 044-2815 3361
 E-mail: chen@ionexchange.co.in
- **Delhi** - Tel: 011-3989 0909/3054 3200 Fax: 011-2577 4837
 E-mail: delcro@ionexchange.co.in
- **Kolkata** - Tel: 033-3989 0909/3043 3400 Fax: 033-2400 4345
 E-mail: calcro@ionexchange.co.in
- **Vashi** - Tel: 022-3989 0909/3913 2300 Fax: 022-2788 9839
 E-mail: mumcro@ionexchange.co.in

BRANCH OFFICES

- **Bengaluru** - Tel: 080-2204 2888 Fax: 080-2204 2888
 E-mail: bngcro@ionexchange.co.in
- **Bhubaneswar** - Tel: 0674-326 9525 E-mail: bber@ionexchange.co.in
- **Chandigarh** - Tel: 0172-274 5011 Fax: 0172-274 4594
 E-mail: delcro@ionexchange.co.in
- **Hyderabad** - Tel: 040-3066 3101/02 Fax: 040-3066 3104
 E-mail: hydcro@ionexchange.co.in
- **Lucknow** - Tel: 0522-301 3401/02 Fax: 0522-301 3401
 E-mail: luk.general@ionexchange.co.in
- **Vadodara** - Tel: 0265-302 7489/90 Fax: 0265-239 8508
 E-mail: brdcro@ionexchange.co.in
- **Visakhapatnam** - Tel: 0891-324 6253 Fax: 0891-324 6253
 E-mail: sales.vizag@ionexchange.co.in

FACTORIES: Ankleshwar • Hasur • Patancheru • Rabale • Verna

ALL INDIA SERVICE AND DEALER NETWORK

Visit us at: www.ionindia.com